3.191 \(\int \frac{(d+e x^2)^2}{d^2-e^2 x^4} \, dx\)

Optimal. Leaf size=29 \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{e}}-x \]

[Out]

-x + (2*Sqrt[d]*ArcTanh[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[e]

________________________________________________________________________________________

Rubi [A]  time = 0.023093, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {1150, 388, 208} \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{e}}-x \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^2/(d^2 - e^2*x^4),x]

[Out]

-x + (2*Sqrt[d]*ArcTanh[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[e]

Rule 1150

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[(d + e*x^2)^(p + q)*(a/d + (c*x^
2)/e)^p, x] /; FreeQ[{a, c, d, e, q}, x] && EqQ[c*d^2 + a*e^2, 0] && IntegerQ[p]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (d+e x^2\right )^2}{d^2-e^2 x^4} \, dx &=\int \frac{d+e x^2}{d-e x^2} \, dx\\ &=-x+(2 d) \int \frac{1}{d-e x^2} \, dx\\ &=-x+\frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{e}}\\ \end{align*}

Mathematica [A]  time = 0.0089009, size = 29, normalized size = 1. \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{e}}-x \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^2/(d^2 - e^2*x^4),x]

[Out]

-x + (2*Sqrt[d]*ArcTanh[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[e]

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 22, normalized size = 0.8 \begin{align*} -x+2\,{\frac{d}{\sqrt{de}}{\it Artanh} \left ({\frac{ex}{\sqrt{de}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2/(-e^2*x^4+d^2),x)

[Out]

-x+2*d/(d*e)^(1/2)*arctanh(x*e/(d*e)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(-e^2*x^4+d^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.87925, size = 149, normalized size = 5.14 \begin{align*} \left [\sqrt{\frac{d}{e}} \log \left (\frac{e x^{2} + 2 \, e x \sqrt{\frac{d}{e}} + d}{e x^{2} - d}\right ) - x, -2 \, \sqrt{-\frac{d}{e}} \arctan \left (\frac{e x \sqrt{-\frac{d}{e}}}{d}\right ) - x\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(-e^2*x^4+d^2),x, algorithm="fricas")

[Out]

[sqrt(d/e)*log((e*x^2 + 2*e*x*sqrt(d/e) + d)/(e*x^2 - d)) - x, -2*sqrt(-d/e)*arctan(e*x*sqrt(-d/e)/d) - x]

________________________________________________________________________________________

Sympy [A]  time = 0.359195, size = 34, normalized size = 1.17 \begin{align*} - x - \sqrt{\frac{d}{e}} \log{\left (x - \sqrt{\frac{d}{e}} \right )} + \sqrt{\frac{d}{e}} \log{\left (x + \sqrt{\frac{d}{e}} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2/(-e**2*x**4+d**2),x)

[Out]

-x - sqrt(d/e)*log(x - sqrt(d/e)) + sqrt(d/e)*log(x + sqrt(d/e))

________________________________________________________________________________________

Giac [B]  time = 1.15496, size = 159, normalized size = 5.48 \begin{align*} \frac{{\left ({\left (d^{2}\right )}^{\frac{1}{4}} d e^{\frac{7}{2}} -{\left (d^{2}\right )}^{\frac{1}{4}}{\left | d \right |} e^{\frac{7}{2}}\right )} \arctan \left (\frac{x e^{\frac{1}{2}}}{{\left (d^{2}\right )}^{\frac{1}{4}}}\right ) e^{\left (-4\right )}}{d} + \frac{{\left ({\left (d^{2}\right )}^{\frac{1}{4}} d e^{\frac{11}{2}} +{\left (d^{2}\right )}^{\frac{3}{4}} e^{\frac{11}{2}}\right )} e^{\left (-6\right )} \log \left ({\left |{\left (d^{2}\right )}^{\frac{1}{4}} e^{\left (-\frac{1}{2}\right )} + x \right |}\right )}{2 \, d} - \frac{{\left ({\left (d^{2}\right )}^{\frac{1}{4}} d e^{\frac{7}{2}} +{\left (d^{2}\right )}^{\frac{1}{4}}{\left | d \right |} e^{\frac{7}{2}}\right )} e^{\left (-4\right )} \log \left ({\left | -{\left (d^{2}\right )}^{\frac{1}{4}} e^{\left (-\frac{1}{2}\right )} + x \right |}\right )}{2 \, d} - x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(-e^2*x^4+d^2),x, algorithm="giac")

[Out]

((d^2)^(1/4)*d*e^(7/2) - (d^2)^(1/4)*abs(d)*e^(7/2))*arctan(x*e^(1/2)/(d^2)^(1/4))*e^(-4)/d + 1/2*((d^2)^(1/4)
*d*e^(11/2) + (d^2)^(3/4)*e^(11/2))*e^(-6)*log(abs((d^2)^(1/4)*e^(-1/2) + x))/d - 1/2*((d^2)^(1/4)*d*e^(7/2) +
 (d^2)^(1/4)*abs(d)*e^(7/2))*e^(-4)*log(abs(-(d^2)^(1/4)*e^(-1/2) + x))/d - x